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Abstract. The concept of conditional stochastic processes provides a powerful tool for evaluation and 

estimation of wave loads on ships and offshore structures. The paper will first consider conditional waves 

with focus on critical wave episodes. Then the inherent uncertainty in the results will be illustrated with an 

application where measured wave responses are used to predict the future variation in the responses within 

the next 5-30 seconds.  

The main part of the paper is devoted to the application of the First Order Reliability Method (FORM) for 

derivation of critical wave episodes for different non-linear wave-induced responses. A coupling with Monte 

Carlo simulations is shown to be able to give uniform accuracy for all exceedance levels with moderate 

computational time even for rather complex non-linear problems. The procedure is illustrated by examples 

dealing with overturning of jack-up rigs, parametric rolling of ships, and slamming and whipping vibrations.     

 

1. Introduction 

Waves and wave loads at sea can only be described in terms of statistical quantities due to the 

inherent stochastic nature of ocean waves. The mathematical theory of stochastic processes 

provides means for the analysis. One area is the analysis of measured or calculated time records, 

where extreme value predictions can be made using various extrapolation procedures like the 

peak-over-threshold method and least-square fitting to Gumbel and Weibull distributions; see e.g. 

Andersen and Jensen (2014) for an analysis of full scale measurements.  

However, when dealing with estimation of wave or response predictions given some prior 

information the theory of conditional processes is a powerful tool. Some examples are: 

 The variation around a known value, e.g. a measured peak 

 The short-term forecasting of a response, knowing previous values 

 The probability of exceeding a prescribed response value 

 Definition of critical wave scenarios for CFD calculations 

The aim of the paper is to illustrate these possibilities with examples covering waves, ships and 

offshore structures. Throughout the paper it is assumed that the stochastic processes are 

stationary in a stochastic sense with unconditional zero mean values. The first chapter deals with 

linear and slightly non-linear responses whereas the last chapter considers fully non-linear wave 

response problems. 

 



2. Gaussian and slightly non-Gaussian processes 

The paper by Tromans et al. (1991) dealing with a definition of a design wave based on a known 

spectral density ( )xS   of the waves initiated a significant research effort aiming at identification 

of response-specific critical wave sequences for application in model tests and computer 

simulations, see Clauss (2008) for a detailed overview. Within linear (wave) theory, the Slepian 

process, Lindgren (1970), provides the necessary theoretical framework. Thus, the conditional 

probability for the response value X(t) (e.g. wave elevation) as function of time t given its value 

0x  at, say, t=0 together with its first, 0x , and second derivative, 0x , with respect to time t at this 

point becomes Gaussian distributed with mean value ( )t  and variance ( )v t : 
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where a super-dot denotes differentiation with respect to time. The conditional mean and variance 

are expressed solely in terms of the normalized time-dependent autocorrelation function ( )r t  and 

its first and second time derivative: 
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together with the spectral moments  
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As  ( )r t  and ( )u t  are nearly equal  but with opposite sign, the inclusion of the second derivative is 

only important if  is close to, but not equal to 1, Andersen et al. (2013). For 0  , Eq. (1) 

reduces to the deterministic result: 0 0( ) cos( ) sin( ) / .X t x t x t      

Due to the Gaussian behavior the conditional mean value ( )t  is also the most probable value 

and can therefore been considered as representing the most probable shape of the response 

around a given peak, Tromans et al. (1991): 

  

 0 0( ) ( ) (0) , (0) 0 ( )t E X t X x X x r t     
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  (4) 



neglecting conditioning on the second derivative. This result can be generalized to the conditional 

mean value ( )y t  of a Gaussian response ( )Y t  (with spectral density ( )yS  ) given again that the 

correlated Gaussian process ( )X t  has a known peak value 0x  at t=0, e.g. Jensen (2005): 
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This is a useful expression when e.g. the wave kinematics given a wave crest is needed.  

For slightly non-Gaussian processes the conditional mean response can be written as, Jensen 

(2005), 
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where 
ijk are normalized spectral moments defined as 
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Higher order terms can be included, Jensen (2005), but are seldom useful for waves and wave 

loads due to lack of accurate estimations of the higher order spectral moments.  

An example of the application of Eq. (6) to wave elevations is shown in Fig. 1. Here an attempt to 

model the so-called Draupner New Year Wave, Haver and Andersen (2000), is made using linear 

and second-order Stokes wave theory. The results are shown both for long-crested and short-

crested waves with a cosine-square spreading function and both for deep water waves and for the 

actual water depth (70 m) at the location of the Draupner platform. All calculations are conditional 

on the measured wave crest of 18.5 m and based on a Pierson-Moskowitz wave spectrum with 

significant wave height Hs=12 m and mean zero up-crossing period Tz=12 sec. As the 

measurement is just one possible outcome of the wave scenario any strict agreement with the 

calculated conditional mean wave cannot of course be expected, but overall the second-order 

model gives a better estimate of the variation of the wave elevation in the vicinity of the given 

crest value. Further details can be found in Jensen (2005), including conditional mean horizontal 

wave particle velocities. However, no measurements of the wave kinematics were made.  



 

Figure 1. Draupner New Year Wave elevation. Measurements from Haver and Andersen (2000). Conditional 

mean wave elevations based on Hs = 12 m, T z = 12 sec., no current. Uni: long-crested, sc: short-crested 

waves. Deep water and finite water depth h = 70 m. Jensen (2005). 

 

2.1 Critical wave episodes 

By prescribing a specific value of an input process ( )X t  , e.g. the wave elevation, in Eq. (6) 

associated conditional mean values of any correlated responses ( )Y t  can be found. However, 

often another application where ( )X t  is a wave response and ( )Y t  the associated wave elevation 

is very useful as it determines the most probably wave episode ( )Y t  yielding a prescribed peak 

response at t=0:
0(0) , (0) 0X x X  . This was first investigated by Adegeest et al. (1998) for 

wave bending moments in ships and later by many others, e.g. Cassidy et al. (2001), Dietz et al. 

(2004). The idea is that these critical wave episodes then can be applied as input to time-domain 

simulations using time-consuming non-linear hydrodynamic models as a mean to reduce the 

necessary length of the time series. The probability of exceedance follows directly from the 

Gaussian property of (0)X :    0 0(0) / xP X x x    , where   is the standard normal 

distribution function. 

The non-linear peak response 0,non linearx  obtained from these simulations can then be considered as 

a transformation of the linear peak response 0x  and, if monotonic; the associated statistics is 



simply obtained by associating the non-linear peak value 
0,non linearx 

with the same probability as 

the corresponding linear value
0x . Calculations with different values of 

0x  then give the full 

distribution of the non-linear response.  For instance, the mean up-crossing rate 
0,( )non linearx 


  

becomes: 
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However, this definition of a critical wave episode only represents the mean response around a 

given maxima. Hence, memory effects might not be sufficiently accounted for.  To circumvent this 

problem the critical wave episode can be superimposed with realizations of the unconstrained 

stochastic wave, Lindgren (1970). A set of realization of this combined wave is then used as input 

to the non-linear hydrodynamic calculations. The result is a distribution of the non-linear 

response, conditional on a given linear response peak 0x . Un-conditioning with respect to the 

linear maxima can then be performed, assuming that the linear peak response is Rayleigh 

distributed, Dietz et al. (2004), Oberhagemann et al. (2012). This method is called a Conditional 

Random Response Waves (CRRW) approach. 

Another procedure has been suggested in Alford et al. (2011). Here the phase angles in the 

stochastic wave representation are estimated such that a given wave or response event is 

obtained. Monte Carlo simulations of moderately rare events of a random process indicate that the 

random Fourier component phases are non-uniform, non-identically distributed, and dependent on 

the rarity of the target event. A Modified Gaussian distribution has been found to compare 

reasonable well with the simulations and is used in the so-called Design Load Generator to 

generate design time series with a given expected value at a specific time. 

The procedures outlined above rely on the assumption that the linear result yields a critical wave 

scenario which also holds for the real non-linear problem in question. Thus for instance the non-

linear response should show a peak value at nearly the same point in time as the linear problem 

when using the same critical wave episode. Otherwise, the linear constraint model, Eq. (6), might 

not capture the effect of non-linearity correctly.  One extreme example is parametric rolling of 

ships, where no linear solution exists due to the bifurcation type of response. In such cases, a 

procedure based on the First Order Reliability Method (FORM) provides a good alternative, 

especially if coupled with Monte Carlo Simulations (MCS). This will be discussed in Chapter 3, but 

before another application of Eq. (1) is considered below. 

 

2.2 Short-term forecasting of measured responses 

Provided a measured wave-induced response shows a Gaussian behaviour Eq. (1) can be used to 

estimate its future value within the time frame of the memory effect of the response, typically of 

the order of 10-20 sec. This has been investigated in Andersen et al. (2013) using hull girder 



strain measurement on-board a large container vessel. As the estimated response 

0 0 0( ) (0) , (0) , (0)X t X x X x X x   is Gaussian distributed the variance ( )v t determines completely 

its statistical variations with respect to time. From measurements the autocorrelation function 

r(t), Eq. (2), can be estimated. The results show that the variance is increasing quite rapidly with 

time at the beginning and levels out to the un-constraint variance 0m  around 20 sec forward of 

the measurement, Fig. 2. Waviness in the variation is also noticed due to the variation in the 

autocorrelation r(t) of the signal with the dominant period in the response. The rapid increase in 

variance with time makes the short term predictions rather uncertain already after about 5 sec. 

Furthermore, a knowledge of the second derivative of the response at t=0 has little influence on 

the result. 

The results can be improved if conditioning is made of more measured values prior to t=0. Hence, 

Eq. (1) is replaced by, ignoring conditioning of any derivatives: 
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with 1 20 .. nt t t     and 
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Thereby the accuracy of the short term predictions increases as the variance is reduced as shown 

in Fig. 2 for n=10 and 1 1i it t   sec.  

Finally, it is noted that the result, Eq. (10), based on conditional stochastic processes is exactly 

the same as the Autoregressive Predictor (AR) method in the Yule-Walker formulation: 
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Generally, the accuracy decreases with the bandwidth of the response. Usually the time increment 

1i it t   should be around 0.5 to 1 sec and the number of terms, n, enough to cover the memory 

period, i.e. n =30 to 40, e.g. Fusco and Ringwood (2010).  



 

 

Figure 2. Hull girder strain measurements. Normalized variances 0( ) /v t m . Thin line: Eq. (1), Thick line: 

Eq.(10) with n=10, Andersen et al. (2013) 

 

3. Non-linear processes 

The application of Eq. (5) or Eq. (6) for definition of a response-specific critical wave episode ( )Y t

relies as mentioned before on its ability to describe also the most critical wave episode when a 

more accurate non-linear model of the wave-induced response is applied. Thus, for instance 

Eq.(6) is able to capture the slight non-linearity seen in the wave-induced bending moment in 

container ships sailing in moderate seaways, e.g. Jensen and Pedersen (1979). However, if 

slamming plays an important role then full CFD calculations might be needed, e.g. Oberhagemann 

et al. (2008) and Seng et al. (2012). Other examples with strong non-linearity are overturning of 

jack-up rigs and parametric rolling of ships, to name just a few. Common for all these problems is 

that a critical wave scenario calculated from Eqs. (5)-(6) does not give a good representation of 

the most probable wave episode for the non-linear problem. 

One solution is to apply direct Monte Carlo Simulations (MCS), but usually the computational 

effort needed for extreme value predictions is prohibitive large. An alternative is to look at 

approximate procedures, which focuses on the tail in the probability distribution. A good candidate 

is the First Order Reliability Method (FORM), widely used in structural reliability analyses, but also 

an efficient method for extreme value predictions, as suggested originally by der Kiureghian 

(2000) and derived for wave loads by Jensen and Capul (2006). Due to efficient optimisation 

procedures implemented in standard FORM codes and the short duration of the time domain 

simulations needed (typically 60-300 sec. to cover the hydrodynamic memory effects in the 

response) the calculation of the mean up-crossing rate of the response is rather fast, implying 

that fairly complicated non-linear effects can be included.  

 



In the FORM procedure a limit state surface G is defined as: 

 
0( ) (0 ) 0G u x X u     (12) 

where  1 2, , ,...,T

nu u u u  are uncorrelated standard normal distributed variables defining the 

stochastic variations of the input ( )Y t u  , e.g. the wave elevation. Realizations of the associated 

wave response ( )X t u  are determined by a time domain analysis covering 0 0t t   .  For a 

stationary stochastic process the value of 0t is unimportant as long as it is longer than the 

memory in the system, i.e. the influence at 0t   of the initial conditions at 0t t   has vanished. 

The realisation, which reaches the given threshold (peak) 0x  at time 0t   with the highest 

probability, is sought. The corresponding values 
*u  of u  is denoted the design point and uniquely 

defines the deterministic input process 
*( ) ( )Y t Y t u


  which, due to the normal distributions of u , 

also is the most probable input process leading to the desired response 0x  at 0t  . Hence, it can 

be considered as the best choice for a deterministic critical input process, e.g. a critical wave 

episode.  

The value of 
*u is the solution to the optimization problem: 

  * :  Minimize ;  Subject to 0Tu u u G u    (13) 

The probability    0(0) 0P X x P G    cannot in general be calculated as it depends on the 

non-linearity in the response ( )X t u . Instead, it is approximated by the probability of exceedance 

the limit state surface function, linearized around the design point: 
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The design point vector 
*u  is normal to the linearized limit state surface and measures the 

shortest distance from origin to the limit state surface. It can therefore from pure geometrical 

considerations be written as 
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The normal vector e  is given as 
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Note, that Eq. (15) is not an equation for determination of 
*u  as e  depends on 0x  and 

*u , but 

merely just a way to write the result of Eq. (13). As 
*( ) 0G u  according to Eq. (13) the linearized 

limit state surface, Eq. (14) can be written 

 
0 0Tx e u    (17) 

Because the linearization is around a design point usually associated with a low probability of 

occurrence, this linearization has been denoted Tail-equivalent linearization, Fujimura and der 

Kiureghian (2007).  

Due to the linearization, the statistics of the response (0)X  follows from Gaussian processes. The 

variance  
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and, hence 
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Here FORM is the reliability index, defined as shortest distance to the limit state surface: 
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For extreme value estimations other statistical measures as for instance the mean up-crossing 

rate 
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are more useful. It requires calculation of the spectral moment 2m  and therefore also a spectral 

formulation of the response. As shown in Jensen (2011) the spectral density  xS    of the 

linearized response becomes 
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where each 
iu  is associated with a sinusoidal linearized response variation in time with frequency 

i . Hence,  
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It is noted that both 0m  and 2m  depend on the design point and thereby 0x   through e .   

In summary, Eq. (6), is now replaced by  

   *( ) ( )y t Y t Y t u


    (24) 

with the statistics given by Eqs. (18)-(23). For a linear system: ( ) ( ) , (0)T TY t a t u X e u  , 
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i.e. Eq. (5) as expected. 

An important observation can be found from Eq. (17). Consider the case where the stochastic 

parameters u  all are scaled by the same deterministic parameter c  and that c  does not appear 

anywhere else in the hydrodynamic model. The obvious example is the significant wave height in 

a spectral model of the wave elevation using e.g. a Pierson-Moskowitz or JONSWAP spectrum. 

Then the solution to Eq. (13) will simply be 
* * /cu u c where 

*u is the solution with 1.c   As 

* *

ccu u , the most probable input process ( )Y t u


 leading to a given response peak 0x  remains 

unchanged, only the probability    0(0) FORMP X x     that it occurs changes as 
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This property is very useful as for instance to perform simulations in artificial high sea states (high 

value of c) where the occurrence of 0(0)X x  happens quite often and then afterwards scale the 

probability down to more realistic sea states. It should be noted that this behavior has been 

derived from purely physical and ingenious arguments by Tonguc and Söding (1986), long before 

the FORM formulation was applied to this problem. The scaling property is not limited to wave 

loads, but can be applied to any load scenario where the intensity of all load components scales 

with the same factor. An example with both wind and wave loads acting on a floating offshore 

wind turbine is given in Jensen et al. (2011). In the following sections various examples of the 

application of the FORM procedure is discussed and illustrated. 



  

3.1  Overturning of a jack-up rig 

In the site assessment analysis of jack-up rigs, global responses such as air gab, overturning 

moment, base shear and horizontal deck sway play an important role. The calculations are usually 

done with the wave forces modelled by Morison’s equation and with integration to the 

instantaneous water surface. The lowest natural period of a large rig is typically around 5-8 sec 

and therefore dynamic effects must be taken into account in the structural response. The ocean 

waves are modelled by stochastic waves specified by a wave spectrum in each stationary sea 

state to obtain realistic modelling of the dynamic amplification. In the following, the results of a 

FORM analysis and Monte Carlo simulations to the overturning of a jack-up rig are discussed. 

Thus, the limit state surface G  is taken as the difference between the restoring moment and 

wave-induced overturning moment. The results are taken from Jensen (2011) where further 

details can be found.  

First a FORM analysis has been performed using both a linear and a second order model of the 

stochastic waves. 

Stationary sea conditions are assumed and specified by a standard JONSWAP wave spectrum in 

terms of a significant wave height SH  and zero-crossing period ZT . Long-crested waves are 

considered travelling towards the up-wave leg. Pinned bottom support and rigid leg/hull 

connections are assumed. The wave spectral density is divided into 15 equidistant spaced 

components yielding n=30 uncorrelated standard normal distributed variables u , each defining a 

sinusoidal variation of the waves. The time domain simulations in the FORM analysis, Eqs.(12)-

(13), are carried out over a length of 0t  = 60 sec as the effect of the initial conditions are found 

negligible after 60 sec. Fig. 3 shows the results as function of 1/ SH  for a zero-crossing wave 

period ZT =9 sec, where dynamic effects becomes important as the lowest natural period of the rig 

is 8.3 sec. 

  

Figure 3. FORM, SORM and Monte Carlo simulation results as function of 1/Hs. Linear (left) and Second order 

(right) waves and Tz=9 sec. Jensen (2011). 



It is seen that inclusion of second order wave components reduce the reliability index mostly due 

to the higher crest values in second order waves coupled with the wave load integration to the 

instantaneous water surface. 

The calculations have also been done for an improved reliability procedure, The Second Order 

Reliability Method (SORM), where the curvature of the limit state surface around the design point 

is taken into account in the estimation of    0(0) SORMP X x    .  

Only one FORM calculation is performed for each of the two cases as the reliability index FORM is 

exactly inversely proportional to SH  as discussed above. This property does not hold for the 

SORM analyses, so here calculations are done for different values of SH . Fig. 3 also includes 

results from direct Monte Carlo simulations (MCS) done in order to validate the FORM and SORM 

results. The SORM results are in better agreement with the MCS results, but in general this not 

always so. The FORM procedure is asymptotically correct for very low probabilities of exceedance, 

i.e. high values of the reliability index, in agreement with the results in Fig. 3. Due to the high 

computational effort required, MCS (with COV=0.05) has only been done for sea states with 

unrealistic high significant wave height ( SH   18 m). The important observation here is the same 

as found in Tonguc and Söding (1986) by other arguments, namely that a scaling of the reliability 

index and thereby the probability of exceedance as suggested by the FORM results provides a 

rather accurate way to scale the calculations down to realistic sea states with SH  around 10-15 

m. Thus, simulations can conveniently be done in unphysical high sea states with a corresponding 

high probability of occurrence of the requested response and thereby of shorter duration. A 

modification of the scaling to read 

 
2 2

SA BH     (27) 

has been suggested by Shigurov et al. (2010), whereas FORM SCH    is proposed in Jensen 

(2011), both with the aim to add flexibility in the curve fitting of the MCS results. Especially, the 

combination of Monte Carlo simulations using artificially increased significant wave heights 

combined with a FORM calculation seems to be able to provide a rather uniform accuracy over a 

large range of exceedance levels, e.g. Fig. 3. Papanikolaou et al. (2014) suggest the same 

procedure in a study of bow acceleration. 

  

3.2 Parametric rolling of ships 

Parametric rolling of ships has rather recently attached a significant research effort due to several 

possible full scale experience of this much undesired behavior of ships at sea. Loss of containers 

typically becomes the results with severe economic consequences. The literature on parametric 

rolling is large; see e.g. France et al. (2003), Shin et al. (2004) and Bulian (2005). The crucial 

term in the governing equations of motion responsible for parametric rolling is the time-varying 



restoring moment, but other terms coupling the heave and the pitch motions to roll are also 

important. A versatile, yet tractable, model of parametric rolling has been developed by Kroeger 

(1986).  The heave, pitch, and yaw motions are determined by standard strip theory formulations, 

whereas the surge motion is calculated from the incident wave pressure distribution. The 

advantage of this formulation compared to full non-linear calculations is the much faster 

computational speed, while still retaining a coupling between all six degrees of freedom, Krüger et 

al. (2004). This model with some simplifications has been applied in FORM analysis, Jensen 

(2007) in order to investigate whether a critical wave episode can be extracted for this 

phenomenon. The limit state surface is taken as a prescribed roll angle and the instantaneous GZ 

curve is determined using an equivalent wave procedure somewhat similar to Kroeger (1986).   

 

Figure 4. Parametric rolling of a ship. Left: Most probable roll response leading to a roll angle of 0.5 rad. 

Right: The corresponding most probable wave episode amidships, Jensen (2007). Note: Initial conditions at 

t=0 and prescribed response at t=300 sec. 

Fig. 4 shows results for the critical wave episode ( )Y t u


 leading to (300sec ) 0.5rad.X u

  The 

memory in parametric rolling is much larger than in most other ship motion components. At least 

0t   300 sec is found necessary in the time domain simulations in the FORM analysis. The 

interesting observation is that the critical wave episode basically is a sum of two contributions: a 

‘regular’ wave with encounter frequency close to twice the roll frequency and a wave height just 

enough to trigger parametric rolling and, a ‘transient’ wave with magnitude depending on the 

prescribed roll response. Thereby, this critical wave episode differs significantly from the usual 

form seen in linear and slightly non-linear problems, where only the transient part is present. The 

reason is that parametric rolling is a bifurcation type of problem needing a minimum level of 

excitation before onset can take place. 

The scaling properties with significant wave height mentioned previously is still valid and 

comparisons with Monte Carlo simulations, Jensen (2007), show good agreement between the 

FORM and MCS results.  

The non-linear hydrodynamic model used here in the FORM analysis for parametric rolling can of 

course be improved, but probably at the expense of much longer computational time. An 

alternative is to apply the critical wave episode ( )Y t u


 determined from the FORM analysis as 



input to a more accurate non-linear analysis. By assuming a monotonic relation between the 

specified response peak in the FORM analysis and the response peak obtained in the new 

simulation using the deterministic critical wave episode, the probability distribution of the 

improved result are obtained as described in Section 2.1: 

  0,improved 0 0,improved( ) ( )FORMx x x    (28) 

This so-called model-correction-factor approach, Ditlevsen and Arnbjerg-Nielsen (1994), Seng and 

Jensen (2013), will be illustrated in the next section dealing with slamming loads on ships.    

 

3.3 Slamming load prediction  

Estimation of slamming loads in the bow of a vessel during operation in heavy sea constitutes a 

very difficult hydrodynamic problem. A detailed investigation of the pressures during bow 

submergence requires very accurate 3D hydrodynamic (CFD) models like a finite volume 

formulation with the free surface captured by a volume-of-fluid technique. Such formulation 

applied in a stochastic sea will generally be prohibitive expensive even on a high performance 

computer cluster (HPC). Therefore, the concept of a deterministic critical wave episode derived 

from a FORM analysis using a simpler non-linear model could be attractive as the use of this wave 

episode in a CFD calculation could increase the accuracy in the probability distribution of the 

slamming load using Eq. (28) with reasonable effort. 

As an example, Seng et al. (2012), Seng and Jensen (2012) derived the critical wave episode for 

Panamax container ship    using a time-domain non-linear strip theory calculation procedure, Xia 

et al. (1998), linked to a FORM code. The hull is assumed rigid.  The vessel is sailing with 5 m/sec 

in head sea in a long-crested sea state characterized by a Pierson-Moskowitz wave spectrum with 

a significant wave height SH  = 10 m and a mean wave period of 11.35 sec. 

The limit state surface is defined as the wave-induced sagging bending moment being equal to 

3000 MNm. The results are shown in Fig. 5 as function of time until the maximum bending 

moment response occurred at the pre-selected time (50 s) after initiation of the calculations. This 

time distance is sufficiently long to ensure that transient (memory) effects from the arbitrary 

initial conditions in the simulations do not influence the maximum response. 

The FORM reliability index for this event is 2.75 corresponding to a return period of approximately 

10 minutes in this stationary sea state and operational condition. Thus, this is a rather frequent 

event with moderate non-linearity and nearly no slamming.  It is for this situation a CFD analysis 

is performed and the results included in Fig. 5 (dashed lines in the left figure). Clearly a good 

agreement between the non-linear strip theory and a full 3D CFD calculation is found including the 

peak values. Thus a model-correction-factor approach could be used, but is barely necessary. 

 



 

Figure 5. Wave bending moment in a Panamax container ship. Left: Most probable bending moment response 

leading to a sagging wave bending moment of 3000 MNm. Full lines: non-linear strip theory, dashed lines: 

CFD. Right: Corresponding most probable wave episode at amidships derived from the non-linear strip 

theory, Seng and Jensen (2012). Note: Initial conditions at t=0 and prescribed response at t=50 sec and, 

sag is positive. 

The results for two other, more severe events are shown in Fig. 6 for another vessel. Here the 

differences are larger, but still the responses from the non-linear strip theory and the CFD 

calculation resemble each other so well that the probability estimate from the FORM analysis using 

the non-linear strip theory can be applied also to the CFD peak response with some confidence 

using Eq. (28). The peak values from the CFD calculations are seen to be considerable less than 

those from the non-linear strip theory calculation, probably due to the very coarse momentum 

slamming model in the strip theory approach.   

 

Figure 6. Wave bending moment in a post-Panamax container ship. Left: Most probable bending moment 

response leading to a hogging wave bending moment of 4500 MNm. Right: Most probable bending moment 

response leading to a sagging wave bending moment of 4500 MNm. Full lines: non-linear strip theory, 

dashed lines: CFD.  Seng and Jensen (2012). Note: Initial conditions at t=0 and prescribed response at t=50 

sec and, sag is positive. 



3.4 Whipping vibrations 

The last example deals with also with slamming, but now for a flexible hull. The ship is a post 

Panamax container vessel and the non-linear strip theory, Xia et al. (1998), is applied again, but 

now taking the hull flexibility into account, Andersen and Jensen (2012) and Seng and Jensen 

(2013), modelling the stiffness of the vessel as a non-prismatic Timoshenko beam. Thereby, the 

critical wave episode derived from the FORM approach changes rather much compared to the 

same wave for the ship modelled as rigid body.  

The main problem encountered was that whereas the non-linear strip theory calculation found 

whipping to be important for the critical wave episode, the use of this wave episode as input to 

the CFD calculation did not give rise to any notable whipping event. Thus the non-linear strip 

theory seems not to be a good predictor for what happens with respect to whipping using a more 

accurate 3D hydrodynamic model.  

One possible alternative solution procedure is Monte Carlo CFD simulations with artificially 

increased significant wave heights resulting in large exceedance levels, Oberhagemann et al. 

(2012). However, extensive computer resources are then needed. Another suggestion, 

Oberhagemann et al. (2012), is the Conditional Random Response Waves approach, Dietz et al. 

(2004), but as it relies on the linear conditional formulation, Eq. (5), the ability of this approach to 

capture strong non-linearity like slamming and subsequent whipping vibrations might pose a 

problem. A combination of these two approaches is suggested to be the most feasible procedure 

and some examples show CPU times of the order 50 days on a computer cluster with 1000 CPU 

cores.  

Sclavounos (2012) have recently suggested an interesting idea able to reduce the number n of 

wave components in the input process. The idea is to replace the usual sum of sinusoidal 

components with a Karhunen-Loeve representation of the stochastic wave field. Due to the close 

resemblance of the individual components in this representation with the autocorrelation function, 

much lesser terms seem to be needed in the stochastic representation of the waves. This will 

greatly reduce the calculation time in the FORM and the Conditional Random Response Waves 

approach. This gain can be used to apply a more accurate hydrodynamic model making the 

resulting critical wave episode a better predictor for the results using a full non-linear model. 

Further work is clearly needed to resolve this issue. This is especially so because recent full scale 

measurements, e.g. Andersen and Jensen (2014), have shown that slamming-induced hull girder 

vibratory bending stresses can be as large as the wave-induced (rigid body) stresses. Such large 

whipping contributions have not been foreseen in the current classification rules and might have 

been one of the reasons for the collapse of the container MOL Comfort, ClassNK (2014).  

 

4. Conclusion 

The aim of the paper is to give an overview of possible use of conditional stochastic processes to 

analyse efficiently linear and non-linear wave response problems for ships and offshore structures. 



Especially the combined use of a FORM analysis or the Constraint Random Response Wave 

approach for very low exceedance levels coupled with Monte Carlo simulations using artificially 

increased significant wave heights seems able to provide a rather uniform accuracy over a large 

range of exceedance levels. Also the ability of FORM to solve bifurcation type problems like 

parametric rolling is worth mentioning. The computational time needed for determination of the 

design point in FORM depends very strongly on the number of wave components applied. 

Therefore, the possibility to use another stochastic wave formulation, the Karhunen-Loeve 

representation, where the usual sinusoidal wave function is replaced by a function better 

modelling the autocorrelation of the stochastic wave looks promising. 

The computational time required is still extremely high if a complicated non-linear hydrodynamic 

model like CFD is needed to get accurate results. This is especially so for hydro-elastic problems 

like slamming and whipping where small inaccuracies might change the combined wave and 

whipping extreme loads significantly. 
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