

Presentation on:

Operational profile optimization and energy saving device study on a container ship

Jinbao Wang MARIC China

The German Society for Maritime Technology Schiffbautechnische Gesellschaft e.V.

Operational profile optimization and energy saving device study on a container ship

Jinbao Wang

Hongmei Chen, Yuefeng Zhang, Hai Yu, Ju Ding, Qiong Wu

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Operational profile optimization on a container ship

Operational profile

	T(m)	Vs(kn)	Ratio
		15	15%
	12.5	19	30%
About 9000TEU		23 5	5%
		14	15%
	14.5	18	30%
		22.5	5%

Integrated System of Automatic Optimization

Flowchart of Optimization ➤ DEP-Morpher: Surface deformation

on parametric expression

➤ Shipflow: Solution to wave-making

resistance

➤Optimus: Optimization algorithm

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Object Function: Minimum wave-making resistance

Variables: Length/breadth/height of Bulbous bow

Range: 18.5#~20#(fore perpendicular)

Parametric expression on Surface and deformation

Deformation and solution

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Comparison between original(Up) and optimized(Down) lines

CFD result

T(m)	Vs(kn)	Cw (Opti-Orig)
	15	-0.6
12.5	19	-0.35
	23	-0.08
14.5	14	-0.55
	18	-0.2
	22.5	0.06

➤ Potential code shows, optimized line has a lower wavemaking resistance except at 14.5m and 22.5kn

➤ Optimized line has a lower and less pronounced bulb

Comparison between original(Left) and optimized(Right) lines

➤ Compared with the original line, optimized line has improved wave-making resistance remarkably at 14kn and 17.8kn(12.5m draft)

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Comparison between original(Left) and optimized(Right) lines

At 12.5m and 21.7kn, optimized line has a better performance

➤ However, at 14.5m and 21.7kn, optimized line has a poor performance ➤ The reason should be: lower and slender bulb, which reduced interference intensity between bulb and fore-body.

Comparison and conclusion

		dCr=Optimal		
T(m)	Vs(kn)	Viscous CFD	Modeltest	Pe
	15	-0.69	-0.70	-28%
12.5	19	-0.42	-0.45	-20%
	23	-0.06	-0.09	-4%
	14	-0.50	-0.49	-23%
14.5	18	-0.15	-0.14	-9%
	22.5	0.04	0.08	3.8%

➤ CFD shows not only the right direction of optimization, but also very close value to model test

➤ Optimized line has a very satisfactory performance, validated by model test with a weighted benefit about 16%

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Energy saving device study on a container ship

Rudder Bulb-RB Propeller Cap Turbine-PCT Thrust Fin-TF

Rudder Bulb study

Grid configuration

CFD setup:

- > Inflow-uniform
- ➤ Mesh-Sliding mesh
- ➤ Unsteady

With rudder bulb (Right) and without(Left)

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Streamline after Propeller with(right) and w/o(left) rudder bulb

- ➤ Hub outflow improved
- ➤inflow of rudder also improved

Test setup and Systematic change

of size and position

Test setup of rudder bulb

B0:0.8B1

B1:Original bulb

B2: 1.2B1

B3:B1-12mm

B4:B1-24mm

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Open-water efficiency comparison from model test Lowest line-No bulb

Comparison between CFD&EFD

Size effect	J=0.81	CFD	1.2times > Ori > 0.8times > W/O	
		EFD	Same as CFD	
	J=0.58	CFD	1.2times > Ori > 0.8times > W/O	
		EFD	Ori > 1.2times > 0.8times > W/O	
Docition offeet		CFD	Ori>BW12>BW24>W/O	
Position effect		EFD	Same as CFD	

'>'means better than; Ori~ Original bulb; BW~ backward

Conclusions:

- Generally, CFD agrees with EFD
- Large bulb size tends to performs better
- Rudder bulb should be as close to Prop hub as possible

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

9000TEU- PCT STUDY

Propeller: six blades with large skew

CFD:

- ➤Only one channel, periodical condition is used
- ➤ Hex, multi-block structural, boundary layer grid

Grid configuration

Votex intensity comparison w&w/o PCT

votex intensity distribution after hub w/o(left) and w(right) PCT

➤ Remarkable decrease of votex intensity with PCT

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Comparison of open-water efficiency between CFD&EFD w&w/o PCT

	Etao(CFD-PBCF)		Etao(EFD-PBCF)			
J	A (W/O)	B (W)	(B/A-1)%	A (W/O)	B (W)	(B/A-1)%
0.40	0.4366	0.4418	1.19	0.4362	0.4423	1.40
0.50	0.5223	0.5260	0.71	0.5244	0.531	1.26
0.60	0.5846	0.5876	0.51	0.5977	0.6045	1.15
0.70	0.6092	0.6123	0.51	0.6451	0.6524	1.13

Conclusions:

- PCT can increase open-water efficiency
- > Effect of PCT tends to decrease with advance ratio increase
- CFD slightly underestimates the effect of PCT

More study on PCT

	P1	P2	P3	P4
Prop Diameter(m)	2.25	2.25	2.25	2.25
Hub length (m)	1.316	1.316	0.98	0.98
Pitch angle (°)	45	40	change	45
skew (°)	0	0	0	0
Number of blades	6	6	6	6

	P1 (%			
J)	P2 (%)	P3(%)	P4(%)
0.40	1.4	1.23	1.2	1.42
0.50	1.26	1.21	1.11	1.47
0.60	1.15	1.21	1.02	1.54
0.70	Belnkefit f	rom E FD	0.92	1.66

Conclusions:

- All PCT has helped to increase open-water efficiency
- Benefit from all PCT seems not to change much with advance ratio increase
- Hub length and pitch angle are not very sensitive to PCT effects. Relatively, Shorter hub length and 45°pitch angle performs best

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Thrust Fin and Rudder Bulb

X-position change of Thrust Fin

Model test setup and comparison

0-40mm
0.59
0.53
0.53
0.64
0.49
0.49
0.45
0.46
0.46
0.46
0.47
0.45
0.47
0.46
0.47
0.48

Conclusions:

- TF has better performance when further from propeller
- Large TF seems to be unnecessary
- Unsuitable position or size could deteriorate the performance

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

Further simulation and validation

CFD	EFD
2.2%	3.9%

Summarize of ESDs

- ➤ RB should be large enough to match propeller hub and the thickness of rudder, and the distance between hub and RB should be as close as possible.
- ➤ PCT can increase open-water efficiency by 0.9%-1.7% at different advance ratio J=0.4-0.75. Kt increases and Kq decreases. PCT is not very sensitive to pitch angle, hub length and installation angle.
- For RTF, installation angle, longitudinal position, are important parameters. From open-water efficiency, it's found that -1° is the best one. Afterwards 40mm position is the best. Chord length change is not so sensitive to efficiency.
- ➤ Model test further shows, propulsive efficiency increases by 3-4% with RB and RTF for the studied case.

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA

General Conclusions

Operational profile has aroused more and more attention in the past years. EEDI pressure on new ships and profit-driven motivation have pushed ship owners to take every possible measures to improve ship's performance. For the container ship,

- From CFD study and model test, it's possible to reduce weighted resistance over 10% taking operational profile into account
- ➤ PCT, RB and RTF are suitable energy saving devices. Model test shows, RB and RTF are suitable combination which contributes 3-4% power reduction.
- ➤ Work in this paper will help to reduce overall resistance and increase propulsive efficiency with suitable energy saving devices.

Thank you for your attention!

MARINE DESIGN AND RESEARCH INSITITUTE OF CHINA