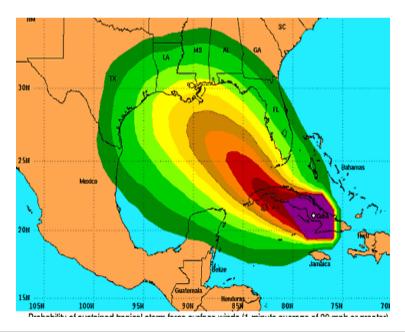
- Shipboard Weather Routing - Operational Benefits

Ship Efficiency 2009

Hamburg, 2009-09-28/29



Germanischer Lloyd

Outline

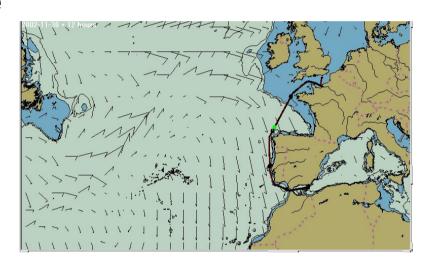
- Shipboard weather routing (SWR)
 - Characteristic features
 - Motivation and objectives
- Class notation HRMS
 - Advanced SRA system
 - Typical components
 - Full scale validation
- Fuel consumption module
 - Added resistance in waves
- Conclusion

Characteristic features

Status

Navigator estimates ship response based on weather forecast

Computed or measured ship response

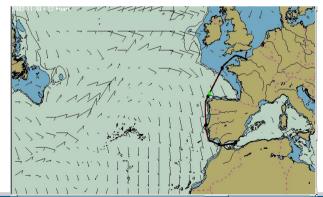

- Onboard (not land-based)
- Based on weather data

Key weather data

- Seaway (Hs, Tp)
- Wind

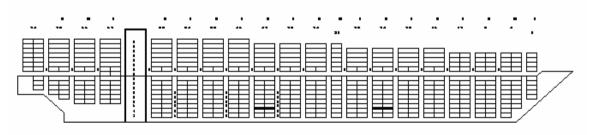
Routing

- Course and/or speed
- Present
- Future / planning


Principal objective of SWR

Onboard support for decision-making of the navigator

- Reduce risk for crew injuries, hull damage and cargo loss
- Reduce fuel consumption
- Provide active route planning
- **⇒** Quantify and improve service performance


Motivation and objectives of SWR

(1) Safety at sea

- How well can you see from the bridge?
- How well can you judge the sea?
- Danger of underestimating the severity of the sea state
- Danger of navigating at too high speed

(2) Economy/efficiency

- Reduced repair time
- Soaring fuel prices

About 50% of containers are stowed on deck

IACS Rec. 34 wave climate North Atlantic

70% operation in seaways with $H_S \le 4$ m

Hs/Tz	1,5	2,5	3,5	4,5	5,5	6,5	7,5	8,5	9,5	10,5	11,5	12,5	13,5	14,5	15,5	16,5	17,5	18,5	SUM
0,5	0	0	3	293	1896	2597	1389	408	81	12	2	0	0	0	0	0	0	0	6680
1,5	ECONOMY		64	2159	10897	16946	12198	5203	1541	352	67	11	2	0	0	0	0	49440	
2,5				5	433	4728	13644	16314	10644	4525	1411	351	74	14	2	0	0	0	52145
3,5	0	0	0	0	76	1523	7066	12428	11167	6215	2440	740	185	40	8	1	0	0	41890
4,5	0	0	0	0	13	429	2966	7202	8448	5881	2793	997	287	70	15	3	0	0	29104
5,5	0	0	0	0	2	112	1091	3510	5196	4398	2466	1015	330	90	21	5	1	0	18239
6,5	0	0	0	0	0	28	366	1512	2755	2778	1809	847	308	92	24	5	1	0	10526
7,5	0	0	0	0	0	7	114	592	1302	1540	1150	606	245	80	22	5	1	0	5664
8,5	SAFETY			0	0	2	34	214	560	768	650	382	170	61	18	5	1	0	2866
9,5	O/	OALLII		0	0	0	9	73	223	350	333	217	106	41	13	4	1	0	1371
10,5	0	0	0	0	0	0	3	23	83	148	157	113	60	25	9	3	1	0	624
11,5	0	0	0	0	0	0	1	7	29	58	69	54	31	14	5	2	0	0	271
12,5	0	0	0	0	0	0	0	2	10	22	28	24	15	7	3	1	0	0	112
13,5	0	0	0	0	0	0	0	1	3	8	11	10	7	4	2	0	0	0	45
14,5	0	0	0	0	0	0	0	0	1	3	4	4	3	2	1	0	0	0	17
15,5	0	0	0	0	0	0	0	0	0	1	1	2	1	1	0	0	0	0	6
16,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
SUM	0	0	3	362	4580	20323	43629	54485	45705	28248	13676	5429	1832	542	144	35	7	2	219000
Tp [s]	2,1	3,5	4,9	6,3	7,7	9,2	10,6	12,0	13,4	14,8	16,2	17,6	19,0	20,4	21,8	23,2	24,6	26,0	
λ [m]	7	19	38	63	94	131	174	224	279	341	410	484	564	651	744	843	948	1060	
							Felder in Stunden bezogen auf 25 Jahre Beobachtung												

Class notation HRMS (1/5)

- New Structural Rules for containerships launched at SMM 2008
 - HRMS class notation draft due in May 2009
 - HRMS class notation rule text due for next update 2010
- Other ship types will follow
- HRMS notation for
 - conventional sensor based systems
 - more advanced routing systems

Class notation HRMS (2/5)

Rule structure

- General (application, class notations, liability, ...)
- System types (notations HRW, HRM, HRS, HRD, HRSRA)
- System requirements (sensor types, robustness, accuracy)
- Installation and testing
- Survey requirements
- Guidance on selection (sensors, VDR, training, ...)

Class notation HRMS (3/5)

Class notation HRW

- This notation will be assigned to ships provided with a shipboard seaway measurement system that can display and record the wave information.
- SRA type systems are to be identified by their main function or purpose.

Class notation HRD

- This notation will be assigned to ships provided with a hull response monitoring system that records voyage data for later analysis.
- Voyage data recorders are to be identified by the extent of their recording capability, the time scale of their recording, and the survivability of their recordings.

Class notation HRMS (4/5)

Class notation HRM

- This notation will be assigned to ships provided with a hull response monitoring system that can display and record the motion information from either one accelerometer or pressure transducer.
- Motion monitoring systems are to be identified by their main function or purpose.

Class notation HRS

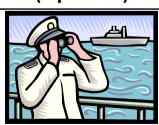
- This notation will be assigned to ships provided with a hull response monitoring system that can display and record the hull stress information from at least two strain gages.
- Stress monitoring systems are to be identified by their main function or purpose.

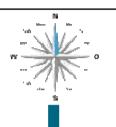
Class notation HRMS (5/5)

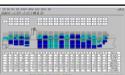
Class notation HRSRA

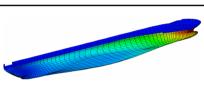
- This notation will be assigned to ships provided with a shipboard routing/planning assistance system with the aim to recognize situations potentially dangerous to the ship and its cargo.
- SRA type systems are to be identified by their main function or purpose.

SeaScout Basic and SeaScout Premium


Seaway Measurement using X-band Radar


Seaway Forecast (Optional)


Seaway Observation (Optional)


Navigational Data from Vessel

Actual Loading Condition from Loading Computer

Hydrodynamic Database

Display of Ship Responses on Bridge

Hardware Sensors

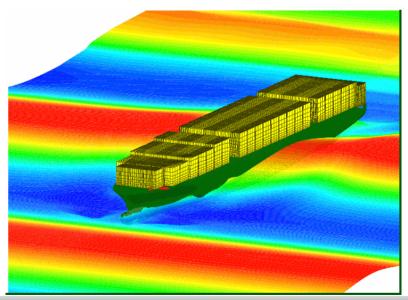
Fuel consumption module

Typical monitored ship response (1/2)

Ship motions and accelerations

- Heave, pitch and roll
- Vertical acceleration at AP, L/2 and FP
- Horizontal acceleration at top container level at AP and FP

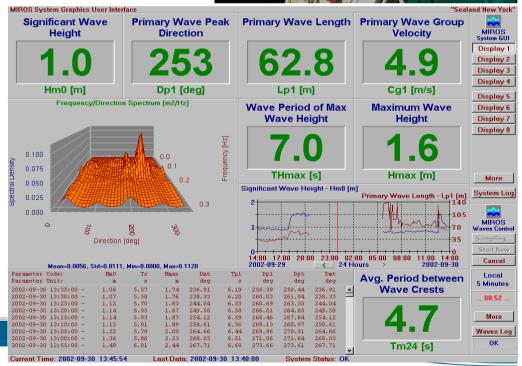
Parametric roll warning


- Head seas: T_{Roll} = 2 T_{Encounter}
- Following seas: T_{Roll} = T_{Encounter}
- Primary wave system's wave length in the order of ship length
- Wave height > threshold level
- Low roll damping

Typical monitored ship response (2/2)

- Likelihood for slamming
- Water on deck
- Sectional loads
 - Vertical wave bending moment at section amidships,
 Vertical shear force at 1/4L and 3/4L

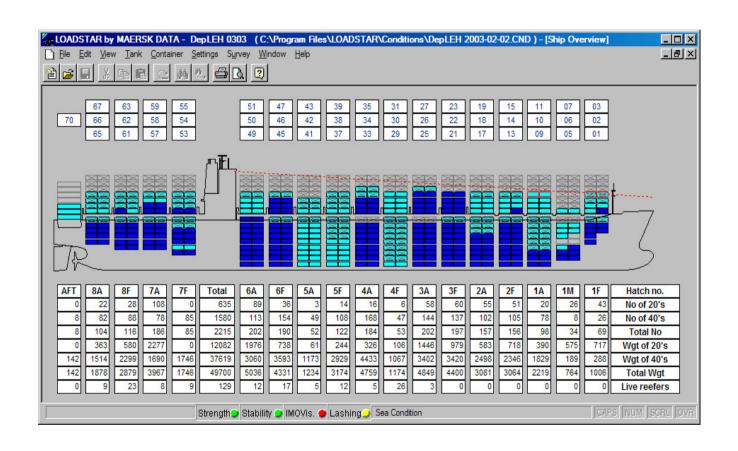
Advanced technique uses nautical X-Band radar for continuous seaway measurements


Wave spectra

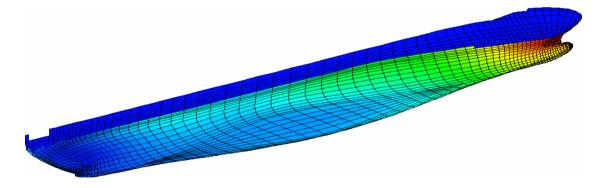
Directional wave spectra

Wave height

- Significant wave height
- Maximum wave height
- Wave length
- Wave direction



Loading computer

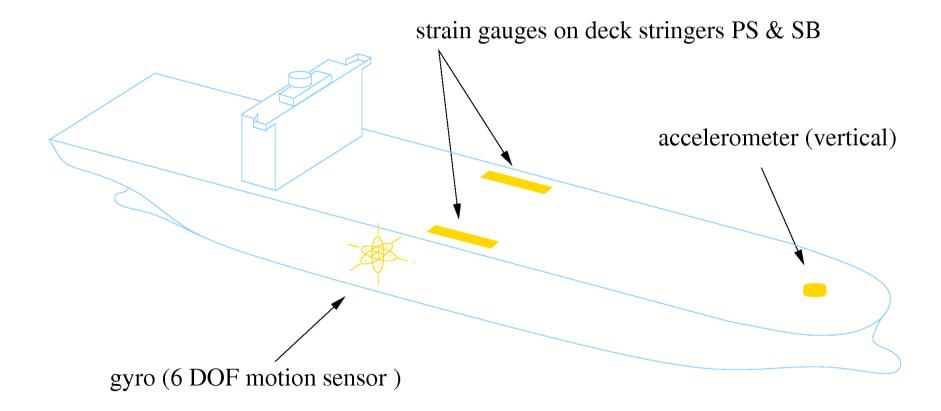

- Actual Mass Distribution
- Hydrostatic Properties
 - GM / GZ
 - LCG
 - Trim

No. 16

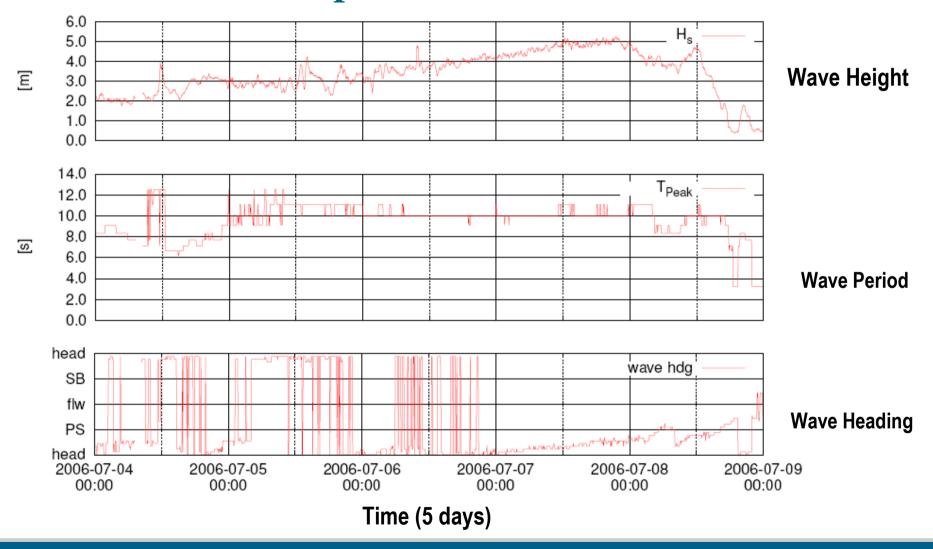
Hydrodynamic database

- 5 Speeds
- 4 Draughts (5m to 14m)
- 13 Headings
- Wave lengths from L/4 to 5L

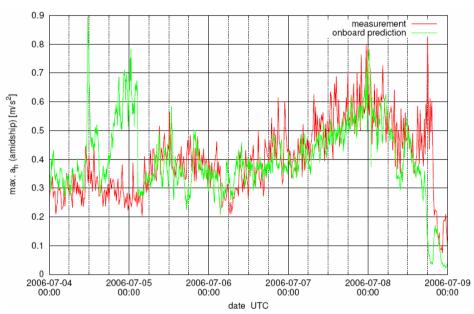
Seakeeping code GL PANEL

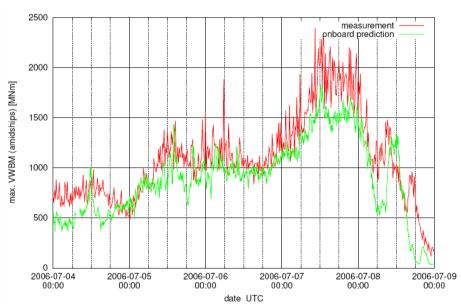

No. 17

SRA display on the bridge



Validation


Full-scale validation: Environmental parameters



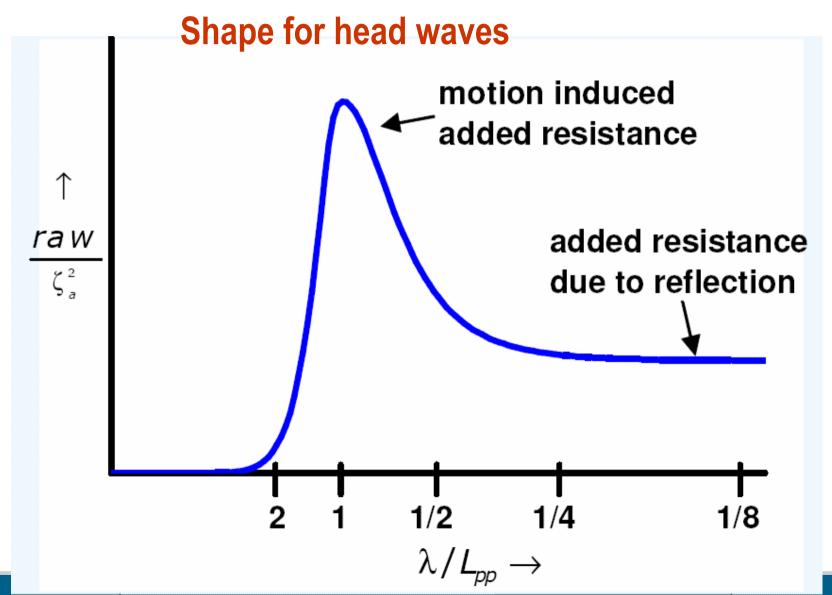
Full-scale validation: Comparison of ship response

Horizontal acceleration amidships

Vertical wave bending moment amidships

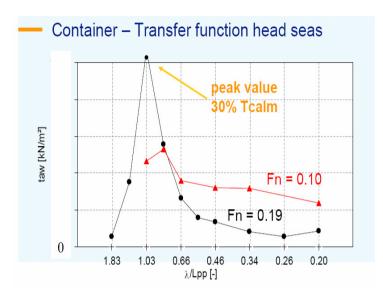
Time (5 days interval)

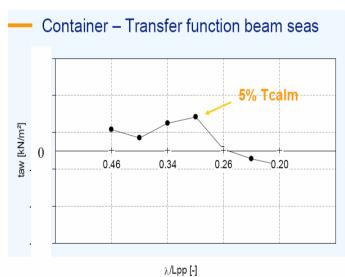
Time (5 days interval)

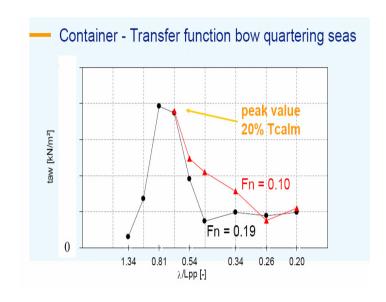

No. 21

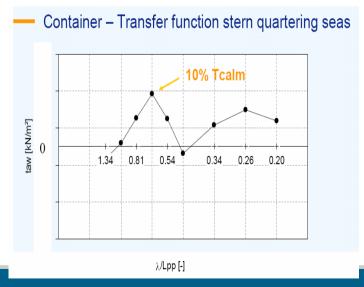
Fuel consumption (FC) in waves

- Most of their time ships operate at sea
 - Calm water assessment not sufficient
 - However, most seaways mild to moderate (70% Hs < 4.0 m in NA)
- FC = f (hull form, wave amplitude and length, heading, speed, draft)
- Added resistance in waves relatively higher for smaller ships
 - Must the sea margin account for this?

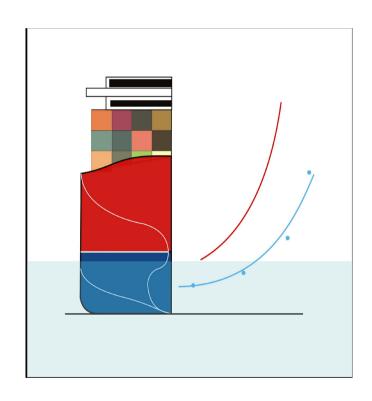



Added resistance in waves



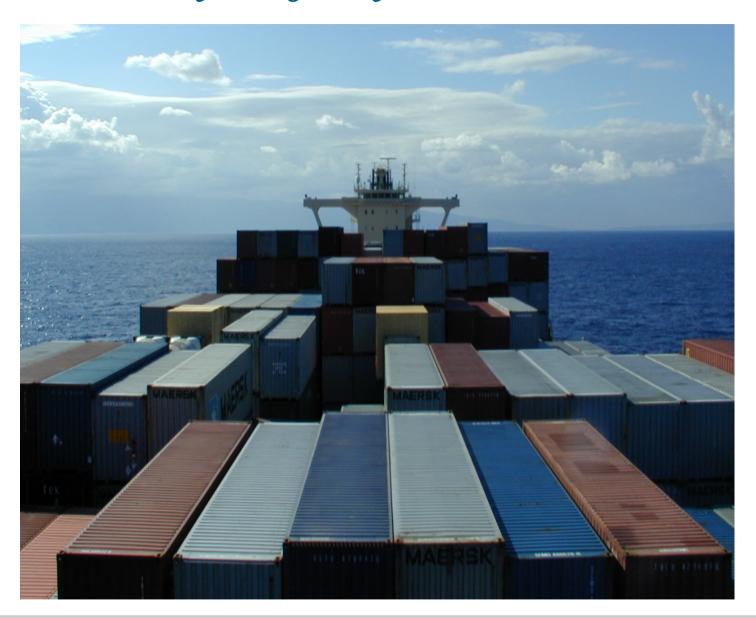


Added resistance in waves



Added resistance in waves

- Added resistance represents dominant part
- Physical model preferred due to large scatter in empirical formulation (ref. SPA JIP)
- R = f (hull form, wave amplitude and length, heading, speed, draft)



Conclusion

- Larger ship dimensions call for SWR navigational aid
 - HRMS class notation
 - Classical sensor based systems
 - Routing systems
- SWR technology still under development
 - Wave sensor
 - Current setup (especially roll affected ship response)
 - Onboard evaluation of FC
- ⇒ Routing based on safety and economy

Thank you for your attention

