

Energy Efficient Gas Propulsion Systems with Hybrid Shaft Generator

Tobias Haack - Sales Manager

© 2011 Rolls-Royce plc

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc.

This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies.

A comprehensive range of products....

Ship design and integrated ship systems

Diesel and gas engines

Gas turbines

Automation and control (DP)

Propulsion systems

Steering systems

Electrical podded propulsors

Azimuth thrusters

Tunnel thrusters

Waterjets

Stabilising systems

Winch systems

Rolls-Royce Marine Engines Bergen

- New engine block, cylinder head and connecting rod machining centres (end 2008)
- Over 6300 engines sold world wide, and more than 4000 engines still in operation
- 8 test cells + development test cell
- Docking facility for sea transportation
- RRM Foundry nearby
- History:
 - Established in 1943
 - First diesel engine delivered 1946
 - First HFO engine delivered in 1963
 - First lean-burn gas engine delivered in 1991
 - First marine gas engines for gas electric propulsion delivered 2006
 - First 2nd generation marine gas engine delivered primo Dec. 2010

Rolls-Royce marine engines

S d Filtrice Control of Control o

Designed for robustness, harsh operational environments, and exceptional levels of reliability

- Emissions
 - •NO_x
 - •SO_x
 - Smoke / Particulates
 - •CO₂

•Fuel availabylity and price!!!

- •BP statistics: Reserve for gas is 63 years but only 46 years for oil
- •Prof.Dr.-Ing. Rulfs, TUHH:
 - After 2030 HFO will not be the dominating cheap ship fuel anymore and will disappear around 2040
- •Exept for short periods LNG was always cheaper then HFO:
 - •HFO currently approx. 650\$/t
 - •MGO currently approx. 1000\$/t
 - •LNG currently approx. 500\$/t (depending on shipping costs)

NOx Emission limits IMO

NOx emission for Bergen engines

- B32:40 diesel with Clean Design notation
- C25:33 diesel with Clean Design notation
- B35:40 gas
- ▲ C25:33 gas

Smoke issues.....

EEDI: CO₂ Emissions

IMO has introduced the *Engergy Efficiency Design* Index for newbuildings to decrease CO2 Emmissions from the shipping sector:

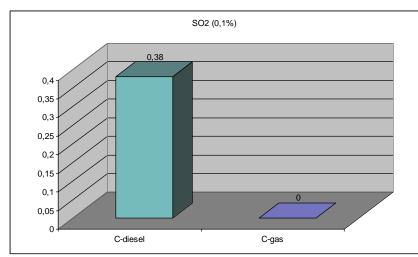
Using the numbers of MEPC.1/Circ.681:

- •1 ton of Oil lead to 3.206 tons of CO2 Emmisions
- •1 ton of LNG lead to 2.75 tons of CO2 Emissions
- The fuel oil consumption of a typical Diesel engine is 183g/kWh
- The fuel oil consumption of a Rolls-Royce gas engine is 150 g/kWh

CO2 Reduction of approx.30%

Means a 30% lower attained EEDI

But what about the Methan Slip?


- Methan has a approx. 20 times the Greenhouse effect of CO2
- •The Rolls-Royce lean burn gas engines have a Methan Slip of about 3 g /kWh (measured an confirmed by 3rd parties)

Taking MPEC conversion factors into consideration this still means approx. **20% less C02**

Emissions - MDO versus Natural gas

SO2 med S = 0.1%

But what about the money?

Gas consumption comparison — Generators – constant speed: Single fuel vs Dual fuel

How many years of operation until the "risk premium" is covered?

6000 running hours @10 000 kW

MGO	183 g/kWh	950 \$/t
Urea	9 g/kwH	800 \$/t
LNG	150 g/kWh	550 \$/t

Fuel costs of approx. 5 Million \$ vs. 11 Million \$

Dual fuel system meeting IMO Tier III:

SCR reduce NOx

Scrubber reduce SOx

Filter reduce PM

More cost due to

- Add Energy = CO2
- Add Urea
- Add maintenance
- Add Complexity

Lube oil change over

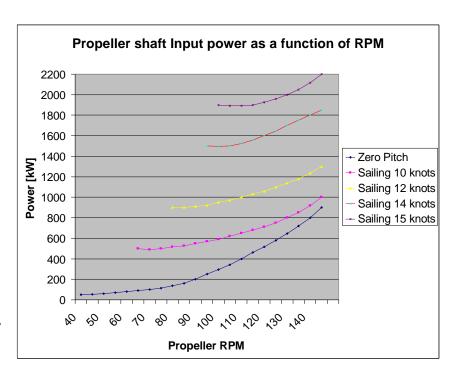
Fuel change over

Water Separator Oil Separator Waste Material

Natural gas system meeting IMO Tier III:

Traditional Merchant Ship PropulsionSingle engine

- Single mechanically driven propeller through a reduction gearbox
- Shaft generator used for production of electrical power at sea and powering tunnel thrusters during manoeuvring
- Pros
 - High efficiency
 - Simplicity
 - Reliability
 - Low cost


Cons

- Shaft generator requires constant RPM
- Losses at propeller when operating at reduced speed

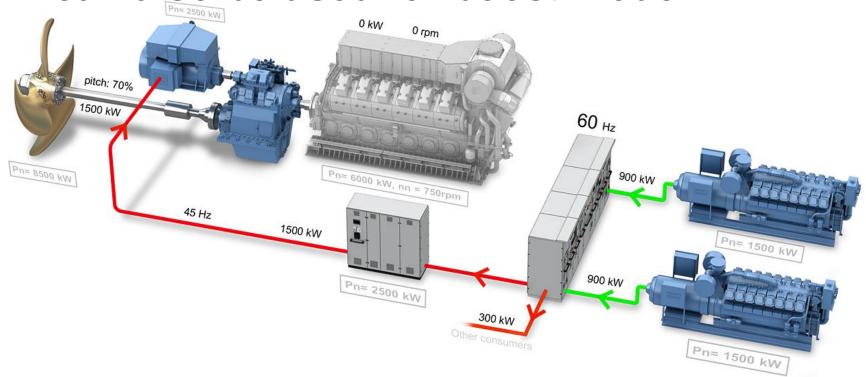
Variable Speed Operation

- Operation in combinator mode
 - Variable engine speed and propeller pitch
- Maintains efficiency of propulsion system during part load
 - Reduced rotational losses at propeller
 - Engine operates at better specific fuel consumption

- Conditions power coming from the shaft generator
- Switchboard is supplied with constant voltage, constant frequency and matched phase angle
- Allows use of combinator mode during generation from shaft generator
- Enables recovery of power previously wasted through propeller rotational losses
- Significant efficiency gains

Combinator mode, normal steaming

Hybrid Shaft Generator


Combinator mode with parallel

Hybrid Shaft Generator

 Diesel/gas electric mode, main engine can also be used for boost mode

Shore connection mode

- Reduction in vessel speed
- Reduction in propeller RPM (arrow A)
- Vessel propulsion power requirement reduces (arrow B)
- HSG can still supply switchboard with electricity at correct frequency and voltage despite RPM change

Hybrid Shaft Generator Example 2

Ships on Order

- Sea-Cargo 132.8m gas fuelled cargo vessel
 - Believed to be world's first LNG main propulsion vessel with simple mechanical propulsion
 - 5,600 tonnes cargo capacity
 - 1,140 lane-metres RoRo capacity
 - Up to 94TEU of containers on deck
- NSK Shipping 70m fish food carrier
 - Approximately 2000 tonnes fish food pellets capacity
 - DP0 capability
 - Rolls-Royce gas engine, gas system, shaft generator, propeller, tunnel thrusters, controls and automation

The gas engines

Sahilk Road

Types: C26:33L6-8-9

Bore: 260 mm

Stroke: 330 mm

Power: max. 244 / 270 kW / cyl

• Speed: 600 – 1000 rpm

Power range: 1460 – 2430 kWmech

References:

Fjord1 Gas fuelled ferry (3xC26:33L9ACD)

Island Offshore - UT776CDG PSV (2xC26:33L9AG + 2xC25:33L6ACD)

Fjord1 Gas fuelled ferry (1xC25:33L9AG retrofit)

NSK Shipping - Bulk carrier (1xC26:33L6PG)

The gas engines

Types: B35:40L6-8-9 &

B35:40V12, -16

Bore: 350 mm

Stroke: 400 mm

Power: 420 / 440 kW / cyl

Speed: 500 - 750 rpm

Power range: 2520 - 8750 kWmech

References:

Sea-Cargo, RoRo vessel (1xB35:40V12PG)

Torghatten Nord, Gas ferry (2 x 1xB35:40V12PG 2 x 1 x C26:33L9PG)

Lean Burn Gas engines

- More than 500 sold, over 400 gas engines in operation
- More than 20 mill running hrs experiences
- More than 140.000 running hrs
- Plants operating 8.500 hrs/year
- The five car ferries (16 engines)
 have logged more then 30000 running
 hours & more than 50000 port calls.

- Rolls-Royce lean burn Gas engines solve all emission regulations at once
- With the Rolls-Royce lean burn Gas engine the EEDI can be reached even with most current ship designs
- The Rolls-Royce lean burn Gas engine is superior in fuel oil consumption compared to Diesel- and DF engines.
- The small increase in investment costs pays off easily especially in combination with the Hybrid Shaft generator
- The Rolls-Royce lean burn Gas engine is a proven technology and LNG infrastructure is not a problem

