

K. Heinrich, ABB Turbo Systems Ltd., 2011-09-27, Ship Efficiency 2011, 3rd International Conference

Advanced Turbo Charging 2-Stage TC's, Exhaust Gas Recirculation and Waste Heat Recovery

Advanced Turbocharging Introduction

Advanced Turbocharging Introduction

Humid air

Key technologies (mid term, IMO III)

NOx -80%

- Many different methods for NOx reduction, -80% only proven with SCR and gas as fuel
- Can other methods or a combination thereof reach -80% better or at a lower cost than SCR?

Emulsion

Water injection

Common rail

VVT

Advanced Turbocharging Introduction

Advanced Turbocharging Outline

- 2-stage Turbocharging
 - Boundary conditions
 - Special Requirements for High Pressure TC's
 - ABB Product Development
- Exhaust Gas Recirculation
 - Challenges
 - Possible solutions
- Waste Heat Recovery
 - Reasons for WHR
 - Potential
 - ABB Offerings

Advanced Turbocharging Outline

- 2-stage Turbocharging
 - Boundary conditions
 - Special Requirements for High Pressure TC's
 - ABB Product Development
- Exhaust Gas Recirculation
 - Challenges
 - Possible solutions
- Waste Heat Recovery
 - Reasons for WHR
 - Potential
 - ABB Offerings

1-stage $\pi_{sC} > 5.0$

- Part load becomes challanging
- TL-Frame size as known
- TL-Matching needs more variants

 – Product portfolio more complex

2-stage $\pi_{sC} > 6.5$

- Smaller frame sizes
- Higher η_{TC}
- More flexibility for matching
- More flexibility for valve timing necessary

For higher receiver pressure the step to 2-stage charging is necessary

- Charging efficiency up to75%
- Compressor pressure ratio up to 10 ÷ 12 expected
- Higher $\Delta p_{Cyl.}$ over cylinder
- ⇒ Use of full potential of Miller cycle possible
- ⇒ Increased power density of the engine
- ⇒ Use of higher ∆p_{Cyl.} to reduce valve overlap
- Higher charge air pressure can be used for either NOx or bsfc reduction

Requirements for a high pressure TC significant differ from standard TC, new design is necessary

- Higher pressure at TC flanges
 - higher forces > new mounting concept
 new casing and flange design
- Higher air density at compressor inlet
 - Higher shaft torque ➤ appropriate design necessary
 - Higher axial thrust and thicker shaft ➤ new bearings needed
- Higher pressure after compressor / before Turbine
 - Shaft sealing must be adjusted to have control over blow-by
- Changed requirements for thermodynamically components
 - Compressor: Efficiency and swallowing capacity higher rated as total pressure ratio, wide maps important
 - Turbine: High flow capacity needed
 - Turbine casing must be redesigned as kinetic energy at turbine outlet is not a loss anymore – energy is available to LP turbine

ABB product strategy

Low pressure turbocharger

- 1st generation derived from existing turbocharger types with partly newly developed thermodynamic components
- Product development for 2nd generation LP TC's ongoing

High pressure turbocharger

- 1st generation radial design finalized
- First 2 radial frame sizes released for sales
- Product development for 2nd generation axial and radial HP TC's ongoing

Volume flow rate

Advanced Turbocharging Outline

- 2-stage Turbocharging
 - Boundary conditions
 - Special Requirements for High Pressure TC's
 - ABB Product Development
- Exhaust Gas Recirculation
 - Challenges
 - Possible solutions
- Waste Heat Recovery
 - Reasons for WHR
 - Potential
 - ABB Offerings

Advanced Turbocharging Exhaust Gas Recirculation

Why EGR:

- EGR is one method to reduce the NOx level
- Technology known from automotive engines
- All components needed for NOx reduction mounted to the engine no additional space needed
- No additional media needed (e.g. urea)
- HP EGR is thermodynamically more efficient compared to low pressure EGR
- With HP EGR the main compressors are protected from the exhaust gases
- Possible solutions: EGR blower with electric motor or EGR turbocharger

Advanced Turbocharging Exhaust Gas Recirculation

Challenges:

- Fuel Quality EGR not feasible with HFO
- Switch in between ECA and non-ECA (EGR on vs. EGR off mode)
- Reliability of EGR compressor
- Additional cooler capacity needed
- Additional control elements needed

Advanced Turbocharging Exhaust Gas Recirculation

Volume flow rate

Volume flow rate

Advanced Turbocharging Outline

- 2-stage Turbocharging
 - Boundary conditions
 - Special Requirements for High Pressure TC's
 - ABB Product Development
- Exhaust Gas Recirculation
 - Challenges
 - Possible solutions
- Waste Heat Recovery
 - Reasons for WHR
 - Potential
 - ABB Offerings

Reasons to apply Waste Heat Recovery WHR

- Increasing fuel prices
- Reduction in total fuel consumption
- Reduction in exhaust emission
 - CO₂
 - NOx
 - SOx
 - Particulars
- "Green Vessel" → Competitive advantage

Gas

- Power turbine → Generator
- Shaft motor or without shaft motor

Steam & Gas

- Waste heat boiler
- Steam turbine
- Power turbine & steam turbine → Generator
- Shaft motor

PTL1700

800...1700kW mech. output

PTL3200

1500....3200kW mech. output

Power turbine in combination with high efficiency A100-L offers good potential for WHR

Advanced Turbocharging Conclusion

- Driven by increasing engine power density, call for reduced specific fuel oil consumption and tighter emission regulations a strong trend for higher charge air pressure can be seen
- Several technologies for emission reduction are under investigation. Many of them call for adjusted charging systems
- To meet the market requirements ABB develops it product portfolio accordingly
- First two stage turbocharging systems are introduced to the market already.
 The product range will be expanded as needed.
- ABB supports emission reduction technologies by adjusted charging systems
- Performance of actual A100-L turbo chargers has excellent potential to apply waste heat recovery systems

Power and productivity

