

Challenging wind and waves

Linking hydrodynamic research to the maritime industry

A Framework for Energy Saving Device (ESD) Decision Making

Authors: J. H. de Jong, G.J.D. Zondervan

Presented by J.H. de Jong

Contents

- 1. Background
- 2. Propulsion improvement
- 3. Practical application of ESDs
- 4. Approaches in retrofits and newbuildings
- 5. Conclusions & future developments
- 6. Discussion

Background

- Fuel cost likely to increase further
- Emission regulations (EEDI) underway
- Operators challenged to improve ship propulsion
- Increasing concern also on underwater noise on marine life (!)

Background

- Structural failure.[improved FEM]
- Lack of accuracy in full-scale measuring capability.
 [full scale monitoring]
- Lack of transparency of the savings in actual operational conditions.
 - [new op's profile based approach]
- Limited insight into the detailed working principles of the devices and therefore a lack of ship-specific design capability.
 [CFD]
- Lack of ownership accountability.[EEDI]

Below a typical approach is suggested for the selection and verification of ESD options:

- Select retrofit using data indicated by the owner/supplier;
- Optimize by ar
- Model test to v

the type and details of the hull form

Trial to confirm

the variations in draft/trim

the ship speed(s),

the relevant operational circumstances

- Optimize by applying CFD & check viability;
- Model test to validate;
- Trial to confirm.

Getting confidence in the proposed ESD as a real energy saver.

Tuning the design of the ESD for the particular ship and its operation

Preparing for the interpretation of the efficiency gain predictions derived from model tests

- Select retrofit using data indicated by the owner/supplier;
- Optimize by applying CFD & check viability;
- Model test to validate (incl. CFD);
- Trial to confirm.

- Select retrofit using data indicated by the owner/supplier;
- Optimize by applying CFD & check viability;
- Model test to validate (incl. CFD);
- Trial to confirm.

MARIN has energy saving high on its agenda and currently runs a Joint Industry Projects (20 partners) called Refit2Save investigating:

- Meewis duct
- Rudder mounted post -swirl stator
- Ducted propeller
- Hull vane

- Majority of the ESDs improve the flow in front or behind the propulsor
- Energy saving and flow improvement (cavitation noise)
- Look at the overall efficiency

$$\frac{P_E}{P_D} = \eta_D \qquad = \frac{J \; K_{To}}{2 \; \pi K_{Qo}} \; \frac{K_{Qo} \; K_T}{K_Q \; K_{To}} \; \frac{1-t}{1-w} \\ (\eta_{Po}) \qquad (\eta_R) \qquad (\eta_H)$$
 (Hull resistance)

- Majority of the ESD's improve the flow in front of behind the propulsor
- Energy saving vs. flow improvement (cavitation, noise)
- Look at the overall efficiency

$$\frac{P_E}{P_D} = \eta_D = \frac{J \ K_{To}}{2 \ \pi K_{Qo}} \ \frac{K_{Qo} \ K_T}{K_Q \ K_{To}} \ \frac{1-t}{1-w}$$
 Axial losses Rotation losses Viscous losses (friction) Non-uniformity (blades etc)

- Majority of the ESD's improve the flow in front of behind the propulsor
- Energy saving vs. flow improvement (cavitation, noise)
- Look at the overall efficiency

$$\frac{P_E}{P_D} = \eta_D$$
 = $\frac{J K_{To}}{2 \pi K_{Qo}} \frac{K_{Qo} K_T}{K_Q K_{To}} \frac{1-t}{1-w}$ (η_{Po}) (η_R) (η_H) Wake adaptation Hub shape

– Objective of ESD is to improve:

- Propulsor efficiency or
- Propulsor hull interaction or
- both

Propulsor efficiency

- From basic axial actuator disc theory follows an 'ideal' propulsor efficiency.
- Good propulsor designs are within a range of that ideal efficiency.
- Difference accounts various energy losses.
- Highest efficiency found for low thrust loading (CT = KT/J2)

Propulsor efficiency

- Swirl generating devices
 - Recover rotational energy losses by producing swirl velocity in opposite direction.
 - Design result should be minimisation of rotational energy losses aft of the system.
 - Rotational energy can be 'locked-up' in the propulsion system.
- Focus can be shifted in optimisation to minimisation of frictional energy losses.
- Optimum diameter decreases

Propulsor efficiency

Rotational and viscous losses respectivey indicated by red and green arrows

- Swirl generating devices
 - Contra-rotating propeller
 - Pre-swirl stators
 - Post-swirl stators
 - Grim's vane wheel
- Propeller hub devices
 - Rudder bulbs
 - Propeller boss cap fin (PBCF)
- Nozzles
 - Propeller nozzles
 - Pre-nozzles (WEDs)

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

DSME Pre-swirl stator

- Swirl generating devices
 - Contra-rotating propeller
 - Pre-swirl stators
 - Post-swirl stators
 - Grim's vane wheel
- Propeller hub devices
 - Rudder bulbs
 - Propeller boss cap fin (PBCF)
- Nozzles
 - Propeller nozzles
 - Pre-nozzles (WEDs)

Mitsubishi HI

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Nautican nozzle

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Mewis Duct

Pre-swirl

- Stator blades induce swirl velocity in front of propeller
- Pre-swirl flow is neutralized by the propeller
- Gains not only from recovery of rotation energy but also from reduced friction drag (smaller optimum propeller diameter)
- Gains reduced by reduced postswirl stator effect of the rudder

- Step #1 : Preliminary design using lifting-line model
 - Influence of many parameters to be explored
 - Computationally inexpensive
- Step #2 : Analysis and systematic variation using unsteady BEM
- Step #3 : Verification with viscous flow solver

- Step #1 : Preliminary design using lifting-line model
- Step #2 : Analysis and systematic variation using unsteady BEM
 - Propeller cavitation analysis
 - Selection of final design variant
- Step #3 : Verification with viscous flow solver

- Step #1 : Preliminary design using lifting-line model
- Step #2 : Analysis and systematic variation using unsteady BEM
- Step #3 : Verification with viscous flow solver
 - Identification of flow problems
 - Identification of scale effects in model experiments

- Step #1 : Preliminary design using lifting-line model
- Step #2 : Analysis and systematic variation using unsteady BEM
- Step #3 : Verification with viscous flow solver
 - Identification of flow problems
 - Identification of scale effects in model experiments

- Step #1 : Preliminary design using lifting-line model
- Step #2 : Analysis and systematic variation using unsteady BEM
- Step #3 : Verification with viscous flow solver
 - Identification of flow problems
 - Identification of scale effects in model experiments

Model tests

Verification of design calculations

- Model propulsion tests on vessel fitted with designed pre-swirl stator and 6 and 4 blade stock propeller
- 2.5 % power reduction gained for 6blade propeller (100.2 to 96 RPM)
- 5% power reduction for 4-blade propeller
- Efficiency gains and RPM drops indicate that design method is promising

Some examples of stator integration

twin screw vessel with pre-swirl stator

Bulk carrier with a L-J Van Lammeren duct and pre-swirl stator

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Rudder stators & fins

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Working mechanisms

- Propulsion:

- Torque reduction (Qf)
- Some thrust penalty (Tf)
- Reduction rotational loss (hub vortex)

- Resistance:

 Perhaps some reduced pressure drag of propeller hub due to removed hub vortex

Source: K. Ouchi et al. (Japan Society of Naval Architects and Ocean Engineers, 1992)

- PBCF seems cost effective and without risks.
- For the hydrodynamic mechanism to work:
 - Rotation losses of single propeller should be significant enough.
 - Thus, the higher the loading at the inner radial profile sections the better.
 - (not common feature for properly designed propellers)
 - (maybe PBCF works best for dedicated propeller designs)
 - Make the right comparisons!
 - Large propeller hub diameter
 - Notice that rudder is also recovering propeller rotational losses

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Nozzle on hopper dredger by IHC

Propeller-nozzle combinations

- Well-known "Kort" nozzle developed as early as the 1930's by Stipa and Kort.
- Nozzles begin generating sufficient amounts of thrust when the propeller suction is high enough.
- Can outperform open propellers when roughly the thrust loading
 CT > 1.5 2.5.
- However:
 - For structural reasons not accepted for large diameters.
 - Nozzle supports can bring significant additional resistance.
 - Key factor is proper integration of nozzle and ship hull! (e.g. tunnels)

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Mewis duct

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Schneekluth duct

Swirl generating devices

- Contra-rotating propeller
- Pre-swirl stators
- Post-swirl stators
- Grim's vane wheel

Propeller hub devices

- Rudder bulbs
- Propeller boss cap fin (PBCF)

- Propeller nozzles
- Pre-nozzles (WEDs)

Combined with fins

Working mechanisms

– Many possible working mechanisms:

Propulsion:

- Wake concentrator:
$$\eta_D = \frac{J K_{To}}{2 \pi K_{Qo}} \frac{K_{Qo} K_T}{K_Q K_{To}} \frac{1-t}{1-w}$$

- Additional nozzle thrust due to foil lift.
- Possible contribution of pre-swirl in propeller plane

– Hull resistance:

- Flow alignment in axial direction (viscous and wave resistance)
- Possible prevention of flow separation (scale effects!)

Model tests

- Show distinct positive effect in order of 5% reduction of resistance (wake fraction).
- Influence on propeller performance.
- Scale effects are bound to exist.

Numerical simulations

- Given the many potential mechanism accurate simulation by CFD is demanding
- Nice pictures still requires verification and validation!
- Requirements:
 - Capturing of all relevant phenomena (vortices, separation, waves, flow interactions)
 - Difficult due to unsteady parts

Conclusions & future developments

- Complexity of ESD design is shown.
- Numerical flow simulation brings a lot of new insight in flow mechanisms but capturing all relevant details is extremely challenging.
- Design & analysis procedures are being developed including quality standards in CFD.
- Fuel saving and reduction of underwater noise can go hand in hand using ESDs